Clouds and Libraries: Classification as a Tool for Cloud Computing

Abstract:
Cloud computing is a new technology model for IT services which many businesses and organizations are adopting. Sharing of resources is a common component of work in libraries, especially with networking. When it is in a cloud, there is a common development platform. It comprises of both hardware and software, which is reusable, and constant updates indexes the online catalogue. In Libraries, cloud computing can simplify processes, save time and money. This article defines cloud computing using classification and shows how it is different. It also discusses how cloud computing solutions using classification systems could be beneficial to libraries.

Subjects, authors, title, etc form clouds, which can be subdivided into sub-clouds, while searching on a computer. Even if catalogues of different libraries using the same classification are placed in a remote source, common searching is possible. How to handle the cloud is like any other index, except that one has to choose a particular cloud. Once a cloud is chosen, normal operations such as moving the highlighting bar to the corresponding entry are available to display bibliographic details. Cloud is at the heart of the retrieval system organized in the order of class number. Each class number along with its subdivisions forms a cloud and sub-clouds. The whole classified system is like a grid in which clouds and sub-clouds are embedded into it. Entering a class number retrieves a class cloud and its sub-clouds. First three characters of book number may also be given to position the classified cloud more accurately.

All clouds are in one way or the other classified. The author, title, etc are alphabetically classified. The keyword and the Boolean and other related operators are also categorized as belonging to a cloud, which is an intersection cloud. But, the most important cloud is the classified, as it enables browsing. An examination of the classified cloud helps us in understanding the deeper ramification of subject clouds. The metadata required for the purpose of creating such clouds is quite complex. First of all, super ordinate and subordinate relation needs to be defined. The example of Physics is used here to illustrate the concept. Physics is a big cloud or can be called “PHYSICS Grid” including its canonical clouds. Canonical clouds are formed on the basis of a general understanding of the extension of the subject over generations. Formation of clouds - such as compound, complex and intersection clouds - varies with the classification scheme. For example, in Colon Classification physics and engineering are placed adjacent to one another. In DDC they are far away. In-between, chemistry, biology, earth science, etc are located. Accordingly, the representation varies while searching using class numbers.